

Enabled by **DNAnexus**<sup>®</sup>

### Integrative Analysis of UK Biobank Proteomics Data

**APRIL 2023** 

© 2023 DNAnexus, Inc. All Rights Reserved.







**Prof Naomi Allen** UK Biobank



**Cindy Lawley, PhD** Olink Proteomics

Dr Benjamin Sun, MD PhD Biogen



**Dr. Karsten Suhre** Weill Cornell Medicine -Qatar





### Chris Whelan, PhD

Janssen Pharmaceutical Companies of Johnson & Johnson



### Ben Busby, PhD DNAnexus

### **Upcoming Webinars - Links in Related Content Section**

- Oncology Researcher Roundtable: May 25th
- Analyzing the UK Biobank Proteomics Data on the UK Biobank Research Analysis Platform: June 1st

|     |      | • |  |
|-----|------|---|--|
| WEB | INAR |   |  |

**Oncology Researcher Roundtable:** Working with Large-Scale Datasets to Enable Discovery

Thursday, May 25th 4:00 pm BST/8:00 am PDT

Find all Event announcements on the Community Forum



earcher Roundtable:



Analyzing the UK Biobank Proteomics Data

biobank"

**Research Analysis** 

Enabled by **DNAnexus** 

Platform



Research Analysis Platform Enabled by DNAnexus

Thursday, June 01 4pm BST / 8am PDT

**REGISTER NOW** 



### Join the conversation to:



**Collaborate** and **connect** with your peers and colleagues and experts from the UK Biobank and DNAnexus

### **On Community, you can:**



**Search and Discuss:** You can browse specific topics, keywords, or questions and exchange helpful tips and ideas with your peers and colleagues



**Get Early Access**: As a Community member, you get first and early access to all DNAnexus webinars, trainings, and roundtable discussions



**Stay Informed**: You can learn the latest information and news on DNAnexus and the Research Analysis Platform



### UK BIOBANK PLATFORM CREDITS PROGRAM

APPLY TODAY

> Visit the Program FAQs

> > Visit <u>Website</u>

Apply here: Application

**DNAnexus**<sup>®</sup>





### ABOUT THE UK BIOBANK PLATFORM CREDITS PROGRAM

The UK Biobank Platform Credits Program is a courtesy of AWS. The program is available to all eligible researchers and is designed to allow researchers to explore the UKB-RAP in detail, develop and test tools and methods, and undertake analysis to support their research project. Credits can be used to cover costs of compute and storage above £40 credits provided by DNAnexus.

### AM I ELIGIBLE?

UK Biobank defines early career researchers as "an individual within an academic institution within four years of the award of their PhD or equivalent professional training, or within four years of starting their first academic appointment (full-time or part-time), excluding career breaks)". Early career researchers also include those bona fide students eligible for reduced Access fees.

Researchers in low- and middle income countries eligible for reduced Access Fees will also be able to participate in this program.



Open to all eligible early career researchers and researchers from <u>low/low-middle income countries</u>

Two Types of Available Funds **1: Getting Started Grants**-Available for all researchers (one per application) **2: Grant Enhancements**- Requested when compute plan is defined



### SCAN TO APPLY!







Credit availability period: 2022-2024

### **UKB-RAP Accelerator**

- Allows UKB researchers to leverage the specific UKB-RAP expertise of DNAnexus to help <u>navigate the rich data</u> of UK Biobank, <u>develop tools</u> to generate hypotheses and insights, and get the most out of the UKB-RAP
- Packages of professional service credits, live training, 1:1 consulting and customer support delivered by the <u>world's</u> <u>leading UKB-RAP experts</u> who are also experts in bioinformatics, data science, and data engineering
- Three <u>flexible package options</u> to meet the needs of small or pilots projects up through large, complex, enterprise endeavors
- Customize packages to support: GWAS, clinical data analysis, imaging studies, multi-modal data analysis, machine learning and more

### Managing UKB-RAP Research Just Got Easier



Interested to learn more? Let us know and we'll send you the details https://hubs.ly/Q01Fwd9D0

6

### **Promote UKB-RAP Community Research!**

Get involved in upcoming UKB-RAP Events

### **Submit Your Application: bit.ly/ukbrap-research**

Opportunities to:

- Present in Upcoming Webinars & Researcher Roundtables
- Highlight your work in the Newsletter Spotlight
- Organize a Meetup or workshop related to your interest
- ► & More!



### DNAnexus



### **UK Biobank Research Analysis Platform**

### Join Now & Receive £40 Credit for Working on the Platform!

- Register: bit.ly/ukbrap
- An <u>all-in-one platform</u> that comprises cloud infrastructure, analysis tools, and UK Biobank data
- Cloud-based infrastructure allows democratization of access to the data
- Differentiated, secure data access for users from anywhere in the world







### Overview of UK Biobank

Prof Naomi Allen Chief Scientist, UK Biobank naomi.allen@ndph.ox.ac.uk

www.ukbiobank.ac.uk



### UK Biobank... A unique combination of...



Size: 500,000 participants

imaging, etc.

outcomes







### **Depth:** genomics, biomarkers, lifestyle,

### **Duration:** 15 years of follow-up of health

### **Accessibility: +30,000 researchers worldwide**

### Reality

### thinhamk\*

### **Breadth of data collection**

### Lifestyle questionnaire



N~500,000

### **Biomarkers**



*N~500,000* 

### Imaging





*N~100,000* 



### Genomics



*N~500,000* 

### Physical measures



*N~500,000* 

### Follow-up of health via linkage



*N~500,000* 



Easy accessibility of the data to the global research community 

interest and opportunities to enhance the resource further

- High scientific added-value of including sequencing and other –omic data at-scale
  - E.g., accelerating drug discovery and development; risk prediction and stratification
- Cohort-wide assays require deep pockets: need for funding consortia
- Establishment of new models of pre-competitive collaboration
- Short period of exclusive access to assay data before they are made available to the broader research community



### hinhank\*

## Exome and whole-genome sequencing for 500,000 participants



### Whole Exome Sequencing: all 500,000

- Pre-competitive consortium of industry partners
- First 50,000 made available in 2019
- Full cohort made available mid-2022



### Whole Genome Sequencing: all 500,000

- Public-private partnership
- First 200,000 made available Q4 2021
- Full cohort to be made available Nov 2023



### thinhamk\*

- Key clinical biomarkers available
- Transcriptome, proteome and metabolome; assays have started in each of these areas
- Increasing momentum due to an increasingly wide range of potential sources of external investment
- Successful pilots leading to whole cohort projects
- Combination of complementary targeted -omics
- Progression to untargeted -omics, and possibly epigenetics, immune system biomarkers...



### thinhank"

### **Further participant characterisation:** imaging and repeat imaging study



- ~100k participants to be imaged by end-2024
- Apr 2023: 70,000 participants scanned
- Multi-modal protocols
  - Brain, cardiac and abdominal MRI
  - Carotid ultrasound
  - DEXA

- Repeat imaging study of 60,000 participants now started
- Full repeat of baseline + additional samples + OCT eye measures
- Longitudinal measures to assess changes over time





Chan Zuckerberg Initiative 😚







### thinhank"

### Incident cases of various health outcomes

Condition 15 years of follow-up via cohort-wide linkage to key NHS electronic health care records : Diabetes Deaths • Myocardial infarction Cancers • Stroke Inpatient hospital admissions (including COPD critical care) Depression SARS-CoV-2 testing data  $\bullet$ Breast cancer Colorectal cancer Primary care (for 45% of cohort until 2016/7) Lung cancer Ongoing efforts to obtain data Prostate cancer Hip fracture Rheumatoid arthritis Parkinson's disease Alzheimer's disease



| Year of diagnosis |                  |        |  |  |  |
|-------------------|------------------|--------|--|--|--|
| Observed          | served Predicted |        |  |  |  |
| 2020              | 2027             | 2032   |  |  |  |
| 31,000            | 54,000           | 70,000 |  |  |  |
| 15,000            | 30,000           | 46,000 |  |  |  |
| 12,000            | 25,000           | 37,000 |  |  |  |
| 25,000            | 47,000           | 65,000 |  |  |  |
| 25,000            | 39,000           | 47,000 |  |  |  |
| 9,000             | 14,000           | 18,000 |  |  |  |
| 5,000             | 8,000            | 11,000 |  |  |  |
| 4,000             | 6,000            | 8,000  |  |  |  |
| 10,000            | 16,000           | 20,000 |  |  |  |
| 5,000             | 13,000           | 22,000 |  |  |  |
| 4,000             | 6,000            | 8,000  |  |  |  |
| 4,000             | 10,000           | 14,000 |  |  |  |
| 5,000             | 17,000           | 37,000 |  |  |  |

### thinhank"

- SCALE: 500,000 diverse individuals aged 40-69 years when they • joined the study in 2006-10
- **DEPTH:** Exquisite detail about lifestyle, environment and medical • history supplemented by an extensive range of biological assays (haematology, biochemistry, genetics, -omics) as well as imaging
- DURATION: ~15 years of follow-up has already yielded very large numbers of many different health outcomes
- ACCESSIBILITY: Rapidly increasing number of different types of researcher globally (already ~30,000) are using UK Biobank for a wide range of discovery science (1900+ papers in 2022 alone)

### .... and the best is yet to come!





**UK Biobank**: Executive team and Coordinating centre staff, Strategic Oversight Committee, International Scientific Advisory Board, Scientific Working Groups, Oxford University team



### Olink Overview



Cindy Lawley, PhD Sr Director, Population Health Olink Proteomics



C TARKY

TGAGCTATC

NICASCETE ATCAGCETE

STATADADƏ DIATADLƏ

ATADDADTA ATADDADT

SITM

SAGCTATC.



### The Platform: Proximity Extension Assay







Dynamic concentration range

### Covering the broad range of the plasma proteome



Circulating plasma proteins



### Output File – NPX Data File

|    | A        | В     | с        | D       | E         | F           | G               | н             | I                   | ſ          | к       | L      |
|----|----------|-------|----------|---------|-----------|-------------|-----------------|---------------|---------------------|------------|---------|--------|
| 1  | SampleID | Index | OlinkID  | UniProt | Assay     | MissingFreq | Panel           | Panel_Version | PlateID             | QC_Warning | LOD     | NPX    |
| 2  | A1       | 1     | OID20321 | O00584  | RNASET2   | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 1.4223  | 4.3509 |
| 3  | A1       | 1     | OID20206 | Q07108  | CD69      | 0.04        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 1.0986  | 3.0382 |
| 4  | A1       | 1     | OID20195 | P35754  | GLRX      | 0.06        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 2.0558  | 3.5265 |
| 5  | A1       | 1     | OID20094 | Q9H5Y7  | SLITRK6   | 0.05        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 1.5126  | 2.5526 |
| 6  | A1       | 1     | OID20216 | P31431  | SDC4      | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | WARN       | 0.95    | 3.2493 |
| 7  | A1       | 1     | OID20106 | P07585  | DCN       | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 0.508   | 1.7733 |
| 8  | A1       | 1     | OID20324 | 075023  | LILKB5    | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 0.8072  | 6.3634 |
| 9  | A1       | 1     | OID20299 | P48745  | CCN3      | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 0.7146  | 1.7109 |
| 10 | A1       | 1     | OID20381 | P07359  | GP1BA     | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | -0.1536 | 3.9579 |
| 11 | A1       | 1     | OID20187 | P41159  | LEP       | 0.13        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 0.7591  | 3.6306 |
| 12 | A1       | 1     | OID20202 | Q9UK05  | GDF2      | 0.04        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 1.1128  | 3.2225 |
| 13 | A1       | 1     | OID20180 | Q9GZM7  | TINAGL1   | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 0.6614  | 4.0904 |
| 14 | A1       | 1     | OID20099 | Q8NC01  | CLEC1A    | 0.09        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 1.0432  | 1.2994 |
| 15 | A1       | 1     | OID20281 | Q86U17  | SERPINA11 | 0.03        | CARDIOMETABOLIC | 1             | Project1_Plate1_INF | PASS       | 0.1092  | 7.3305 |

LOD values for the assay

Frequency of data < LOD

### Flagged sample (did not pass QC)



NPX value for sample/assay



### Proteomics Analysis Support Tools





### Olink<sup>®</sup> Statistical Analysis App

https://olink.com/products-services/dataanalysis-products/olink-statistical-analysisapp/

### The Olink R Package

https://cran.rproject.org/package=OlinkAnalyze

### Proteins (471)

UNIPROT ID GENE PANELS ¥ LIST P14210 HGF TruSight500 000000 P15692 VEGFA TruSight500 000000 IL10 TruSight500 P22301 000000 075144 ICOSLG TruSight500 0000 P05412 JUN TruSight500 0000 P09038 FGF2 TruSight500 0000 Chromatin organizatio Metabolism of RN Drug ADM fransport of small m

t

Q

### **Insight Pathway Browser**

https://insight.olink.com/pathway-browser

Site A Site B Site C

Untreated



## Introducing the UK Biobank plasma proteomics dataset

Facilitated via the UK Biobank Pharma Proteomics Project (UKB-PPP)

Chris Whelan, Ph.D. | Director, Neuroscience Data Science, Janssen

## Proteomics could accelerate Genetics-Guided Drug Development (G2D2)



UK Biobank's breadth & depth has facilitated systematic **G2D2**  King, Davis & Degner, PLOS Genetics, 2019



Genetics is a **promising but imperfect** drug discovery tool



### Measuring drug targets (i.e., proteins) directly could enhance G2D2



### Proteins are the building blocks of life (and drug development)



<sup>1</sup>Suhre et al., *Nature Reviews Genetics*, 2020

- Provides a basis for **diagnostics** and **therapeutics** ٠
- e.g. plasma p-tau-217 for Alzheimer's disease; ApoB for familial hypercholesterolemia

as those focused on genetic variation and RNA expression".<sup>1</sup>

Measuring proteins appearing in circulation, due to active secretion or cellular leakage, can offer a window into the state of human health.

Recent advances "are allowing proteomics to take its place alongside the comprehensive characterization possible for other omics approaches, such



### <u>Multiplex</u> proteomics allows us to agnostically explore the molecular underpinnings of health and disease





We formed the UKB pharma proteomics project (UKB-PPP) to facilitate *population proteomics* & accelerate G2D2

> UKB-PPP is a consortium of... 13 pharmaceutical companies





...to accelerate the identification of... Better genetic drug targets, biomarkers & medicines



### ...funding the measurement of

### ~3,000 circulating proteins in 57,500 people



## UKB-PPP was a ~1.5-year project: Commencing in April 2021, completing in November 2022



## We applied Olink<sup>™</sup> Explore to 54,306 UKB participants, included randomly-selected & pre-selected samples







0

## UKB-PPP partners are using these proteomic data to reveal dozens of new insights into complex diseases

## In our flagship **consortium manuscript**, we identified **10,000+ gene variants influencing protein levels**

(*i.e.*, protein quantitative trait loci, 'pQTLs'; Sun, Whelan et al., Under Review)

The teams at AstraZeneca & Biogen characterized **rare variants** influencing protein abundances, via exome sequencing

(Dhindsa, Petrovski et al., Under Review)

The team at **Takeda** characterized **neurofilament light (NfL)** as a prognostic marker for ALS

(Smith et al., Under Review)







Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants

Benjamin B. Sun, Doshua Chiou, Matthew Traylor, Christian Benner, Yi-Hsiang Hsu,
Tom G. Richardson, Praveen Surendran, Anubha Mahajan, Chloe Robins,
Steven G. Vasquez-Grinnell, Liping Hou, Erika M. Kvikstad, Oliver S. Burren, Madeleine Cule,
Jonathan Davitte, Kyle L. Ferber, Christopher E. Gillies, Asa K. Hedman, Sile Hu, Tinchi Lin,
Rajesh Mikkilineni, Roin K. Pendergrass, Corran Pickering, Bram Prins, Anil Raj,
Jamie Robinson, Anurag Sethi, Lucas D. Ward, Samantha Welsh, Carissa M. Willis,
Alnylam Human Genetics, AstraZeneca Genomics Initiative, Biogen Biobank Team, Bristol Myers Squibb,
Genentech Human Genetics, GlaxoSmithKline Genomic Sciences, Pfizer Integrative Biology,
Population Analytics of Janssen Data Sciences, Regeneron Genetics Center, Lucy Burkitt-Gray,
Mary Helen Black, Eric B. Fauman, Joanna M. M. Howson, Huun Min Kang, Mark I. McCarthy,
Eugene Melamud, Paul Nioi, Slavé Petrovski, Robert A. Scott, Erin N. Smith, Sandor Szalma,
Dawn M. Waterworth, Lyndon J. Mitnaul, Joseph D. Szustakowski, Bradford W. Gibson,
Melissa R. Miller, Christopher D. Whelan

doi: https://doi.org/10.1101/2022.06.17.496443

### The Calico group profiled markers of mortality

(Sethi et al., Under Review)

Other companies are revealing new insights into **disease causality** and **pathophysiological mechanisms**, as evidenced from **ASHG 2022** 

(Six oral presentations; 13 posters)

### Massive-scale proteomics requires massive-scale collaboration!



Work was completed under **UKB AMS Application 65851** 

- Amgen Brad Gibson, Kimberly Pohoski, Yi-Hisang Hsu, Kári Stefánsson
- Alnylam Luke Ward, Paul Nioi, Aimee Deaton
- AstraZeneca Slavé Petrovski, Oliver Burren, Ryan Dhindsa
- Biogen Ben Sun, Helen McLaughlin, Danai Chasioti, Tinchi Li, Kyle Ferber
- BMS Joe Szustakowski, Erika Kvikstad, Steve Vasquez-Grinnell
- Calico Eugene Melamud, Endy Inui
- Genentech Mark McCarthy, Anubha Mahajan, Rion Pendergrass
- GSK *Robert Scott*, Chloe Robins, Praveen Surendran
- Janssen Mary Helen Black (formerly JRD), Letizia Goretti, Dawn Waterworth, Liping Hou, Nasser Doostparast, Yanfei Zhang, Gayle Wittenberg, Shuwei Li
- Novo Nordisk Joanna Howson, Tom Richardson
- Pfizer Melissa Miller, Josh Chiou, Eric Fauman, Craig Hyde
- Regeneron Lyndon Mitnaul, Hyun Min Kang, Thomas Coleman
- Takeda Erin Smith, Sandor Szalma
- Olink Evan Mills, Cindy Lawley, Philippa Pettingiell, Klev Diamanti, Linda Jung, Jon Heimer
- UK Biobank Lauren Carson, John Busby, Dan Fry, Lucy Burkitt-Gray, Naomi Allen, Rory Collins, all 55,000+ participants!



JSC: Lyndon Mitnaul





ISC: Melissa Miller



JSC: Joanna Howson



JSC: Shuwei Li





PI + Consortium chair:

Christopher Whelan









JSC: Kári Stefánsson

**Bradford Gibson** 

AstraZeneca JSC: Slavé Petrovs







Pharma

Projecto

Proteomics

JSC: Eugene Melamund





32



Genentech



# Working with proteomics data

Benjamin Sun

### Structure within the UKB-PPP data

- UKB-PPP contains both random sampled components and non-random selected components based on certain traits
- Consortium samples samples can be quite different to underlying UKB
  - UK population -> UKB -> UKB-PPP (random baseline) as representative as you get
- UKB-PPP is enriched for diseases that would be otherwise rare by random sampling

-> Use random baseline if you want the most UKB representative samples, otherwise use combined but be wary of the sample substructure and adjust for if needed





| nsortium selected | COVID19 imaging <sup>5</sup> | No. of individuals <sup>2,3</sup> |
|-------------------|------------------------------|-----------------------------------|
|                   |                              | 46,673                            |
|                   |                              | 1,248                             |
|                   |                              | 6,365                             |
|                   |                              | 20                                |

### Be aware of potential sources of proteomics variation

- Olink coefficient of variation (CVs) in line with previous studies and mostly <10%</li>
- Below LOD values are reported
- Both are affected by expected abundance
- Comparisons with UKB assays for overlapping proteins show good concordance
- Associations with demographics show expected trends with previous reports
- Olink -> Olink replication better than Olink -> SomaScan replication











### Sources of variation to be wary of

- In addition to age and sex, think about and account for: Randomised baseline vs selected samples  $\bullet$ Ethnicities/ancestry -> can be estimated with genetic PCs ullet
- - Batches  $\bullet$
  - UKB centre effects  $\bullet$
  - Time between blood draw and protein measurement (sample age) •
- + if analysing genetic data:
  - Genotyping array  $\bullet$
  - Genotyping vs imputation vs WES vs WGS sequencing data -> not always the same ullet
  - Genetic PCs  $\bullet$

+ many other measured confounders if deep-diving into specific traits

- + protein transformation
  - NPX is relative measure and ~log scale  $\bullet$
  - ullettransformations for specific proteins

Inverse rank normalization pragmatic if doing proteome-wide scans but doesn't preclude other
# Examples of applications of proteomics

- Proteogenomics UKB-PPP consortium will be ulletlooking to release summary associations for further downstream interrogation via approaches like colocalization and Mendelian ranomdisation
- Non-genetic proteomics based associations ullet
- Proteomic prediction space lacksquare
- Combining with other multi-omics datasets in UKB
- Discovery/validation dataset for other studies ullet
- NOTE: plasma proteomics may not necessarily ullettranscend to other tissues/fluids







# Summary

- Consider sources of systematic and sample-based variation/structure which may confound associations
- Careful framing of the proteomic assay in the right technical and biological context
   Beware of potential colliders too nitfalls of over-adjusting research design and
- Beware of potential colliders too pitfalls of over-adjusting research design and question is important
- Replication is important as always (UKB-PPP can be thought not only as a discovery platform but also as a replication resource)
- A wide range of applications for this data multiple testing is also very important topic

"with great data comes great scientific responsibility"

### Weill Cornell **Medicine-Qatar**

# **Crossing Proteomic with other data types**

## Karsten Suhre Weill Cornell Medicine - Qatar



**DNAnexus webinar: Integrative Analysis of UK Biobank Proteomics Data, 26 April 2023** 



### Weill Cornell **Medicine-Qatar**

As faculty of Weill Cornell Medicine, we are committed to providing transparency for any and all external relationships prior to giving an academic presentation.

I am involved in setting up private companies that aim at bringing omics research to the clinic.



Weill Cornell Medicine-Qatar

### -Karsten Suhre

### **Multiomics data integration**



## Multiomics data integration



http://www.metabolomix.com/comics/







Researcher log in

Enable your research Explore your participation Learn more about UK Biobank Q

#### **Enabling your vision to improve public health**

Data drives discovery. We have curated a uniquely powerful biomedical database that can be accessed globally for public health research. Explore data from half a million UK Biobank participants to enable new discoveries to improve public health.

**Data Showcase** 

#### Future data releases

UK Biobank is a large-scale biomedical database and research resource, containing in-depth genetic and health information from half a million UK participants. The database is regularly augmented with additional data and is globally accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. It is a major contributor to the advancement of modern medicine and treatment and has enabled several scientific discoveries that improve human health.





#### Participant log in

#### Contact us





| rowse by Primary Category | of Orig                                                                                                      | in                                           |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|
| Category                  | Items<br>35<br>3939<br>0<br>155<br>210<br>72<br>508<br>0<br>4<br>13<br>0<br>16<br>271<br>1107<br>366<br>2646 | Top Level 1<br>Level 2<br>Level 3<br>Level 4 |  |  |  |

https://biobank.ndph.ox.ac.uk/showcase/browse.cgi



| Participants | 52,749   | Value Type | Integer, number of proteins | Sexed     | В   |
|--------------|----------|------------|-----------------------------|-----------|-----|
| Item count   | 55,002   | Item Type  | Records                     | Instances | s C |
| Stability    | Accruing | Strata     | Derived                     | Array     | Ν   |





Enabling scientific discoveries that improve human health

### *i*biobank<sup>\*\*</sup>

#### Data-Coding 143

Name: UniProt meaning for OLINK Protein ID

Description: Relates the integer Protein ID presented in the OLINK dataset to the UniProt meaning

This is a flat (unstructured) list which uses integers to represent categories or special values.

Coding can be downloaded here as a tab-separated file. Download

#### 2923 Categories Meaning Coding 1 A1BG;Alpha-1B-glycoprotein 2 AAMDC;Mth938 domain-containing protein 3 AARSD1;Alanyl-tRNA editing protein Aarsd1 4 ABCA2; ATP-binding cassette sub-family A member 2 5 ABHD14B;Protein ABHD14B 6 ABL1; Tyrosine-protein kinase ABL1 7 ABO; Histo-blood group ABO system transferase 8 ABRAXAS2; BRISC complex subunit Abraxas 2 9 ACAA1;3-ketoacyl-CoA thiolase, peroxisomal 10 ACADM;Medium-chain specific acyl-CoA dehydrogenase, mitochondrial 11 ACADSB;Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial 12 ACAN; Aggrecan core protein 13 ACE; Angiotensin-converting enzyme 14 ACE2: Anaiotensin-converting enzyme 2

#### https://biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=143&nl=1

2918 ZNF830;Zinc finger protein 830 2919 ZNRD2; Protein ZNRD2 2920 ZNRF4;E3 ubiquitin-protein ligase ZNRF4 2921 ZP3; Zona pellucida sperm-binding protein 3 2922 ZP4; Zona pellucida sperm-binding protein 4 2923 ZPR1;Zinc finger protein ZPR1

| es | Downloads | Login | Help |  |
|----|-----------|-------|------|--|
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
| g. |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |
|    |           |       |      |  |



| thi        | nhani            | <b>u</b> k   |                 |             | Index         | Browse     | Search    | Catalogues  | Downloads | Login      | Help     |
|------------|------------------|--------------|-----------------|-------------|---------------|------------|-----------|-------------|-----------|------------|----------|
|            | DD CIAU          | $\mathbf{r}$ |                 |             |               |            |           |             |           |            |          |
| Data-      | Field 3090       | 0            |                 |             |               |            |           |             |           |            |          |
| Descrip    | otion: Number o  | of proteins  | s measured      | ł           |               |            |           |             |           |            |          |
| Catego     | ry: Biological   | samples      | Blood a         | assays ▶ Pi | roteomics >   | Protein bi | omarkers  |             |           |            |          |
|            |                  |              |                 | -           |               |            |           |             |           |            |          |
| Particip   | oants 52,749     | V            | alue Type       | nteger, num | ber of protei | ns         | Sexed     | Both sexes  | Debu      | it Jan 20  | )23      |
| Item co    | ount 55,002      | It           | em Type         | Records     |               |            | Instances | Defined (4) | Versi     | on Feb 20  | )23      |
| Stabilit   | y Accruing       | S            | trata           | Derived     |               |            | Array     | No          | Cost      | Tier d2 o2 | s2       |
|            |                  |              |                 |             |               |            |           |             |           |            |          |
| Data       | 3 Instances      | Notes        | <b>1</b> Record | Table 0     | Related Da    | ta-Fields  | 12 Reso   | ources      |           |            |          |
| Preview    | w Name           |              |                 | Res ID      |               |            |           |             |           |            |          |
| Pdf        | Olink Analysis   | s Report     |                 | 4655        |               |            |           |             |           |            |          |
| Pdf        | Olink Explore    | 1536 - F     | AQ              | 4657        |               |            |           |             |           |            |          |
| Pdf        | Olink data no    | rmalisatio   | on strategy     | 4656        |               |            |           |             |           |            |          |
| Pdf        | Olink proteom    | nics data    |                 | 4654        |               |            |           |             |           |            |          |
| Pdf        | Quality contro   | ol of olink  | NPX datas       | set 4658    |               |            |           |             |           |            |          |
| ata data   | olink assay      |              |                 | 1013        |               |            |           |             |           |            |          |
| data       | olink assay ve   | ersion       |                 | 1014        |               |            |           |             |           |            |          |
| a<br>data  | olink assay w    | arning       |                 | 1015        |               |            |           |             |           |            |          |
| ata data   | olink batch nu   | umber        |                 | 1016        |               |            |           |             |           |            |          |
| an<br>data | olink limit of d | letection    |                 | 1017        |               |            |           |             |           |            |          |
| an<br>data | olink panel lo   | t number     |                 | 1018        |               |            |           |             |           |            |          |
| -          |                  |              |                 |             | h++           | mc.//h     | iahan     | k ndnh      |           | 1k/cha     | weara /f |

| bid                                                                | obank"                                                                                                                                                                              |                                      | Index                       | Browse      | Search                                        | Catalogues                      | Downloads             | Login                                 | Help           |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|-------------|-----------------------------------------------|---------------------------------|-----------------------|---------------------------------------|----------------|
| Data-<br>Descript<br>Categor<br>Participa<br>Item con<br>Stability | Field 30900         tion: Number of proteins measured         ry:       Biological samples > Blood assa         ants       52,749         unt       55,002         v       Accruing | ays ▶ Pr<br>ger, num<br>ords<br>ived | oteomics ►<br>ber of protei | Protein bio | omarkers<br>Sexed B<br>Instances D<br>Array N | Both sexes<br>Defined (4)<br>Io | Debu<br>Versi<br>Cost | t Jan 20<br>on Feb 20<br>Tier d2 o2 s | 23<br>23<br>52 |
| Data                                                               | 3 Instances Notes 1 Record Ta                                                                                                                                                       | able 0                               | Related Da                  | ta-Fields   | 12 Resou                                      | irces                           |                       |                                       |                |
| Preview                                                            | v Name<br>Olink Analysis Report                                                                                                                                                     | Res ID<br>4655                       |                             |             |                                               |                                 |                       |                                       |                |
| Pdf                                                                | Olink Explore 1536 - FAQ                                                                                                                                                            | 4657                                 |                             |             |                                               |                                 |                       |                                       |                |
| Pdf                                                                | Olink data normalisation strategy                                                                                                                                                   | <mark>4656</mark>                    |                             |             |                                               |                                 |                       |                                       |                |
| Pdf                                                                | Olink proteomics data                                                                                                                                                               | 4654                                 |                             |             |                                               |                                 |                       |                                       |                |
| Pdf                                                                | Quality control of olink NPX dataset                                                                                                                                                | 4658                                 |                             |             |                                               |                                 |                       |                                       |                |
| ata data                                                           | olink assay                                                                                                                                                                         | 1013                                 |                             |             |                                               |                                 |                       |                                       |                |
| ata                                                                | olink assay version                                                                                                                                                                 | 1014                                 |                             |             |                                               |                                 |                       |                                       |                |
| ata data                                                           | olink assay warning                                                                                                                                                                 | 1015                                 |                             |             |                                               |                                 |                       |                                       |                |
| data                                                               | olink batch number                                                                                                                                                                  | 1016                                 |                             |             |                                               |                                 |                       |                                       |                |
| ata data                                                           | olink limit of detection                                                                                                                                                            | 1017                                 |                             |             |                                               |                                 |                       |                                       |                |
| data                                                               | olink panel lot number                                                                                                                                                              | 1018                                 |                             |             |                                               |                                 |                       |                                       | ,              |
| data                                                               | olink processing start date                                                                                                                                                         | 1019                                 | <u>htt</u>                  | ps://b      | lobank                                        | .ndph.                          | ox.ac.u               | ik/shov                               | wcase/t        |

### ield.cgi?id=30900

Enabling scientific discoveries that improve human health

UK Biobank Pharma Proteomics Project:

**Olink quality control summary** 



### **UK Biobank Pharma Proteomics Project**

Quality control of Olink NPX dataset • 'Phase 1', Batches 0-7

Benjamin B. Sun, Kyle Ferber and Tinchi Lin (Biogen); Christopher D. Whelan (Janssen)





50



### UKB – Olink Explore 1536 - Data Normalization Strategy

Samples from the study were divided into two sets: i) Set 1 – UKB; and ii) Set 2 – COVID; depending on the time point they were randomly selected from the UKB population. Samples were randomly assigned to 96-well plates, and fully randomized within plates. Each plate contained: i) 87 samples from set 1, set 2 or both; ii) 1 empty well, bridge or overlapping sample; iii) 2 Olink control samples used for quality control; iv) 3 Olink negative control samples used to compute the baseline assay level of each plate; and v) 3 Olink plate control samples used for normalization of protein expression. All Olink samples were placed in column 12 of plates while the remaining 87 samples + 1 empty well were randomized across columns 1-11 and rows A to H (Figure 1).



# **Olink**

## Analysis Report

### 2.1 QC summary

| Olink Panel   | Samples<br>passed QC | Samples<br>passed QC (%) | Datapoints passed QC | Datapoints passed QC (%) |
|---------------|----------------------|--------------------------|----------------------|--------------------------|
| Cardiometabol | ic54523 / 58369      | 93.41                    | 21152616 / 21538161  | 98.21                    |
| Inflammation  | 54281/58363          | 93.01                    | 21011339 / 21477584  | 97.83                    |
| Oncology      | 54153 / 58366        | 92.78                    | 20961212 / 21478688  | 97.59                    |
| Neurology     | 54133 / 58366        | 92.75                    | 20913874 / 21420322  | 97.64                    |

2.2.1 Average %CV

**Olink Panel** 

Explore 384 Cardiometab Explore 384 Inflammation Explore 384 Neurology Explore 384 Oncology

|       | Intra-plate %CV | Inter-plate %CV |
|-------|-----------------|-----------------|
| oolic | 7.59            | 17.83           |
| n     | 7.61            | 17.59           |
|       | 7.81            | 18.52           |
|       | 8.04            | 18.37           |
|       |                 |                 |

# biobank

### **Research Analysis Platform**

Enabling scientific discoveries that improve human health

#### ACCESS PLATFORM

SUPPORT | DOCUMENTATION | COMMUNITY

© 2023 DNAnexus, Inc. All Rights Reserved

### https://ukbiobank.dnanexus.com/landing





Weill Cornell Medicine-Qatar

HELP ~

Any Billed To ∨

Status ^

C Dispensing (10%)



Weill Cornell Medicine-Qatar

Th

| + Add Column to Table >                                                 | < (j                                              | Data F    | ield De | tails           |
|-------------------------------------------------------------------------|---------------------------------------------------|-----------|---------|-----------------|
| APOM                                                                    | AP                                                | OM;Ap     | olipopr | otein N         |
|                                                                         | Enti                                              | ty        |         | Olink<br>1:1 to |
| <ul> <li>Control Assessment Centre</li> <li>Verbal interview</li> </ul> | Cate                                              | egory     |         |                 |
| ✓                                                                       | Valu                                              | е Туре    |         | Nume            |
| abc Treatment/medication code   Instance 0 1 match                      | Da                                                | ta Previe | w: APOI | <b>M;Apol</b>   |
| abc Treatment/medication code   Instance 1 1 match                      |                                                   |           |         |                 |
| abc Treatment/medication code   Instance 2 1 match                      | 1                                                 | 1К<br>0К  |         |                 |
| abc Treatment/medication code   Instance 3 1 match                      | 06 (lt)                                           | 00        |         |                 |
| ✓ 	☐ Biological samples                                                 | H 80<br>X4N 70                                    | 00        |         |                 |
| Blood assays                                                            | 09<br>ance 0                                      | 00        |         |                 |
| ✓ 	☐ Proteomics                                                         | 50 Jy Inst                                        | 00        |         |                 |
| ✓ 	☐ Protein biomarkers                                                 | 100 40<br>140 140 140 140 140 140 140 140 140 140 | 00        |         |                 |
| ✓ 	☐ Olink Instance 0                                                   | <sup>8</sup> 20                                   | 00        |         |                 |
| 123 APOM;Apolipoprotein M                                               | 10                                                | 0         |         |                 |
| Olink Instance 2                                                        |                                                   | -3        | -2      | -1              |
| 123 APOM; Apolipoprotein M                                              |                                                   |           |         | Add             |
| Olink Instance 3                                                        |                                                   |           |         | 700             |
| 123 APOM; Apolipoprotein M                                              |                                                   |           |         | Add             |
|                                                                         |                                                   |           |         |                 |





|                        |                          |         | Û         | K     | ~ |
|------------------------|--------------------------|---------|-----------|-------|---|
|                        | Required field not confi | gured   | Start Ana | lysis |   |
| ANALYSIS INF           | PUTS 1                   | APP SET | TINGS     |       |   |
|                        |                          |         |           |       |   |
|                        |                          |         |           |       |   |
|                        |                          |         |           |       |   |
| 2YZB0J8xYPKxkK73PG2Yzł | 0)                       |         |           | •••   |   |
|                        |                          |         |           |       |   |
|                        |                          |         |           | •••   |   |
|                        |                          |         |           | ~     |   |
|                        |                          |         |           |       |   |
|                        |                          |         |           |       |   |
|                        |                          |         |           |       |   |
|                        |                          |         |           |       |   |
|                        |                          |         |           |       |   |

The tool or one of its dependencies does not allow SSH access.

| RStud                    | io                                                                                                                                                                                                                              |            |            |              |                             |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|-----------------------------|
| File Edi                 | t Code View Plots Session Build Debug Profile Tools Help                                                                                                                                                                        |            |            |              |                             |
| • • •                    | 🐒 🕣 🗸 🕞 🔚 📥 🛛 🍌 Go to file/function 👘 🔡 👻 Addins 👻                                                                                                                                                                              |            |            |              |                             |
| les tes                  |                                                                                                                                                                                                                                 | Env        | ironment   | History      | Connec                      |
|                          | Image: Source on Save   Q                                                                                                                                                                                                       |            |            | Import Data: | set 🗸 🖣                     |
|                          | #KS 23 April 2023                                                                                                                                                                                                               | R -        | 📑 Glo      | bal Environm | ent 🔹                       |
| 3                        | df1 = data.table::fread("test_olink_instance_0.tsv", sep = "\t")                                                                                                                                                                | Dat        | a          |              |                             |
| 4                        | <pre>df2 = data.table::fread("test_participant.tsv", sep = "\t")</pre>                                                                                                                                                          | O C        | lf         |              | 1335                        |
| 6                        | names(df1)[1] = "eid"                                                                                                                                                                                                           | O C        | 1+1        |              | 1335                        |
| 7                        |                                                                                                                                                                                                                                 | <b>O</b> C | IT2        |              | 1332                        |
| 8                        | df = dplyr::left_join(df1, df2)                                                                                                                                                                                                 |            |            | 1            | Ť                           |
| 10                       | plot(df\$apom, df\$p23449_i0, pch=".")                                                                                                                                                                                          | File       | s Plots    | Packages     | Help                        |
| 11                       |                                                                                                                                                                                                                                 |            |            | Zoom – 🚬     | Export                      |
| 2:1<br>R<br>Coeff        | (Top Level)<br>4.2.1 · C:/Users/karst/WCMC-Q/WCMC science/UK Biobank/DNAnexus/Olink/<br>ficients:<br>Estimate Std. Error t value Pr(> t )                                                                                       | ÷<br>0.    | 9          |              |                             |
| (Inte                    | rcept) -0.639762 0.013095 -48.85 <2e-16 ***<br>3449 i0 0 182827 0 003774 48 44 <2e-16 ***                                                                                                                                       | 149        | <u>ں</u> ۲ |              |                             |
| Signi                    | f. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1                                                                                                                                                                        | df\$p234   | 6 –<br>4 – |              | میں<br>بر ایک<br>دو میں ایک |
| Resid                    | ual standard error: 0.301 on 13071 degrees of freedom                                                                                                                                                                           |            |            |              |                             |
| Multi                    | ple R-squared: 0.1522, Adjusted R-squared: 0.1521                                                                                                                                                                               |            | ~ –        |              |                             |
| F-sta                    | tistic: 2346 on 1 and 13071 DF, p-value: < 2.2e-16                                                                                                                                                                              |            | ← –        | •            |                             |
| > sun<br>(Inte<br>df\$p2 | <pre>mary(lm(df\$apom ~ df\$p23449_i0))\$coef<br/>Estimate Std. Error t value Pr(&gt; t )<br/>rcept) -0.6397619 0.013095152 -48.85487 0<br/>3449_i0 0.1828270 0.003774448 48.43808 0<br/>t(df\$apom df\$p22440 i0 pch "")</pre> |            |            | -2           | -1                          |

|                       | - 0                | $\times$ |
|-----------------------|--------------------|----------|
|                       |                    |          |
|                       | Ŗ Project:         | (None) 🝷 |
| tions Tutorial        |                    |          |
| 🕽 140 MiB 👻 🔏         | 📃 List 👻           |          |
|                       | Q                  |          |
|                       |                    |          |
| 1 obs. of 5 variables |                    |          |
| 1 obs. of 4 variables |                    |          |
| 1 obs. of 2 variables |                    |          |
| Nissian Durant time   |                    |          |
| Viewer Presentation   | <b>6</b> • • • • • |          |
| - U 🔮                 | 🧐 Publish          | • 6      |
|                       |                    |          |
|                       |                    |          |
| · · · ·               | י<br>ר             |          |
| df\$apom              | Z                  |          |

## **Krumsiek Lab**



### http://krumsiekla

## Gaussian graphical models



( Weill Cornell Medicine-Qatar

Krumsiek et al., PLoS Genetics, 2012

## Multi-fluid metabolomic modules



Do et al., npj Systems Biology and Applications, 2017 Do et al., Bioinformatics, 2018 https://github.com/krumsieklab/MoDentify

### Modules for IGF-1 associations at metabolite level

## **AutoFocus**





https://capturetheatlas.com/wp-content/uploads/2020/02/aperture-and-depth-of-field-in-photography-chart.jpg

# Pyruvate



**Weill Cornell Medicine-Qatar** 



### **Central carbon**



#### Schweickart et al., unpublished

### **AutoFocus**





() Weill Cornell Medicine-Qatar

#### **Pathway Distribution**

Schweickart et al., unpublished

## **Network integration**



**Weill Cornell Medicine-Qatar** 

Buyukozkan\*, Alvarez-Mulett\*, Racanelli\* et al., *iScience*, 2022

Bioinformatics, 38(4), 2022, 1168–1170 https://doi.org/10.1093/bioinformatics/btab741 Advance Access Publication Date: 25 October 2021 Applications Note

### Systems biology

# maplet: an extensible R toolbox for modular and reproducible metabolomics pipelines

Kelsey Chetnik<sup>1</sup>, Elisa Benedetti<sup>1</sup>, Daniel P. Gomari<sup>2</sup>, Annalise Schweickart<sup>1</sup>, Richa Batra<sup>1</sup>, Mustafa Buyukozkan<sup>1</sup>, Zeyu Wang<sup>1</sup>, Matthias Arnold (<sup>D</sup>)<sup>2</sup>, Jonas Zierer<sup>1,†</sup>, Karsten Suhre (<sup>D</sup>)<sup>3</sup> and Jan Krumsiek (<sup>D</sup>)<sup>1,\*</sup>

<sup>1</sup>Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; <sup>2</sup>Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany and <sup>3</sup>Department of Physiology and Biophysics, Weill Cornell Medical College—Qatar Education City, Doha, Qatar

OXFORD





| Home | Install | Help |
|------|---------|------|

Home » Bioconductor 3.16 » Software Packages » SummarizedExperiment

### **SummarizedExperiment**



DOI: 10.18129/B9.bioc.SummarizedExperiment

#### SummarizedExperiment container

Bioconductor version: Release (3.16)

The SummarizedExperiment container contains one or more assays, each represented by a matrix-like object of numeric or other mode. The rows typically represent genomic ranges of interest and the columns represent samples.

Author: Martin Morgan [aut], Valerie Obenchain [aut], Jim Hester [aut], Hervé Pagès [aut, cre]

Maintainer: Hervé Pagès < hpages.on.github at gmail.com>

Citation (from within R, enter citation("SummarizedExperiment")):

Morgan M, Obenchain V, Hester J, Pagès H (2022). *SummarizedExperiment: SummarizedExperiment container*. R package version 1.28.0, <u>https://bioconductor.org/packages/SummarizedExperiment</u>.

#### Weill Cornell Medicine-Qatar

#### Search:

**Developers** 

About

#### Documentation »

#### Bioconductor

- Package <u>vignettes</u> and manuals.
- <u>Workflows</u> for learning and use.
- Several <u>online books</u> for comprehensive coverage of a particular research field, biological question, or technology.
- <u>Course and conference</u> material.
- <u>Videos</u>.
- Community <u>resources</u> and <u>tutorials</u>.

R / <u>CRAN</u> packages and <u>documentation</u>

#### Support »

Please read the <u>posting guide</u>. Post questions about Bioconductor to one of the following locations:

- <u>Support site</u> for questions about Bioconductor packages
- <u>Bioc-devel</u> mailing list for package

## Acknowledgements

Most of my present work is funded by



under the Biomedical Research Program (BMRP) and by multiple QNRF grants





Enabled by **DNAnexus**®

# Using Proteomics as Features for Disease Subtyping



## **The UKB-RAP and Proteomics – Hypothesis Confirmation**



Q Search UniProt ID, Gene, Pathway or List



https://insight.olink.com/pathway-browser

### **DNAnexus**<sup>®</sup>

© 2023 DNAnexus, Inc. All Rights Reserved.

Smith, et al. https://doi.org/10.1101/2022.04.02.486791

## **The UKB-RAP and Proteomics – Disease Subtyping**





**DNAnexus**<sup>®</sup> © 2023 DNAnexus, Inc. All Rights Reserved.

#### https://ascopubs.org/doi/abs/10.1200/JCO.22.00857
## Quick Tech Tips for Proteomics Data Analysis on the UKB-RAP

- Dispense to a new project instead of refreshing
- Work on the data alongside genomic data on the RAP
- Watch this webinar!



© 2023 DNAnexus, Inc. All Rights Reserved.

refreshing data on the

## **Upcoming Webinars - Links in Related Content Section**

- Oncology Researcher Roundtable: May 25th
- Analyzing the UK Biobank Proteomics Data on the UK Biobank Research Analysis Platform: June 1st

|     |      | • |  |
|-----|------|---|--|
| WEB | INAR |   |  |

**Oncology Researcher Roundtable:** Working with Large-Scale Datasets to Enable Discovery

Thursday, May 25th 4:00 pm BST/8:00 am PDT

Find all Event announcements on the Community Forum







Enabled by **DNAnexus** 



## Analyzing the UK Biobank Proteomics Data

**biobank**<sup>uk</sup> Research Analysis Platform Enabled by **DNAnexus** 

Thursday, June 01 4pm BST / 8am PDT

**REGISTER NOW** 



**DNANEXUS**<sup>®</sup> © 2023 DNAnexus, Inc. All Rights Reserved.